Arabidopsis RIN4 Is a Target of the Type III Virulence Effector AvrRpt2 and Modulates RPS2-Mediated Resistance

نویسندگان

  • David Mackey
  • Youssef Belkhadir
  • Jose M. Alonso
  • Joseph R. Ecker
  • Jeffery L. Dangl
چکیده

Type III pili deliver effector proteins (virulence factors) from bacterial pathogens to host cells. Plants express disease resistance (R) proteins that respond specifically to a particular type III effector by activating immune responses. We demonstrated previously that two unrelated type III effectors from Pseudomonas syringae target and modify the Arabidopsis RIN4 protein. Here, we show that AvrRpt2, a third, unrelated type III effector, also targets RIN4 and induces its posttranscriptional disappearance. This effect is independent of the presence of RPS2, the Arabidopsis R protein that senses AvrRpt2. RIN4 overexpression inhibits multiple phenotypes associated with AvrRpt2 function. Conversely, disruption of RIN4 results in RPS2-dependent lethality. RPS2 and RIN4 physically associate in the plant. We suggest that RIN4 is the target of the AvrRpt2 virulence function, and that perturbation of RIN4 activates RPS2. Thus, RIN4 is a point of convergence for the activity of at least three unrelated P. syringae type III effectors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arabidopsis RIN4 negatively regulates disease resistance mediated by RPS2 and RPM1 downstream or independent of the NDR1 signal modulator and is not required for the virulence functions of bacterial type III effectors AvrRpt2 or AvrRpm1.

Bacterial pathogens deliver type III effector proteins into the plant cell during infection. On susceptible (r) hosts, type III effectors can contribute to virulence. Some trigger the action of specific disease resistance (R) gene products. The activation of R proteins can occur indirectly via modification of a host target. Thus, at least some type III effectors are recognized at site(s) where ...

متن کامل

The Pseudomonas syringae effector AvrRpt2 cleaves its C-terminally acylated target, RIN4, from Arabidopsis membranes to block RPM1 activation.

Plant pathogenic Pseudomonas syringae deliver type III effector proteins into the host cell, where they function to manipulate host defense and metabolism to benefit the extracellular bacterial colony. The activity of these virulence factors can be monitored by plant disease resistance proteins deployed to "guard" the targeted host proteins. The Arabidopsis RIN4 protein is targeted by three dif...

متن کامل

Molecular basis for the RIN4 negative regulation of RPS2 disease resistance.

Recent studies have demonstrated that RPS2, a plasma membrane-localized nucleotide binding site/leucine-rich repeat protein from Arabidopsis thaliana, associates with RPM1 Interacting Protein 4 (RIN4) and that this association functions to modulate the RPS2-mediated defense pathway in response to the bacterial effector protein AvrRpt2. In addition to negatively regulating RPS2 activity, RIN4 is...

متن کامل

Initiation of RPS2-Specified Disease Resistance in Arabidopsis Is Coupled to the AvrRpt2-Directed Elimination of RIN4

Plants have evolved a sophisticated innate immune system to recognize invading pathogens and to induce a set of host defense mechanisms resulting in disease resistance. Pathogen recognition is often mediated by plant disease resistance (R) proteins that respond specifically to one or a few pathogen-derived molecules. This specificity has led to suggestions of a receptor-ligand mode of R protein...

متن کامل

Activation of a phytopathogenic bacterial effector protein by a eukaryotic cyclophilin.

Innate immunity in higher plants invokes a sophisticated surveillance system capable of recognizing bacterial effector proteins. In Arabidopsis, resistance to infection by strains of Pseudomonas syringae expressing the effector AvrRpt2 requires the plant resistance protein RPS2. AvrRpt2 was identified as a putative cysteine protease that results in the elimination of the Arabidopsis protein RIN...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 112  شماره 

صفحات  -

تاریخ انتشار 2003